CBCS SCHEME									
USN							-	* Adyar	Mangalore 17CS73
		Soventh	Somost	or B F D	 ogroo F	vamina	tion L	ulx/A	ugust 2021
		Seventin	Semest	мас	hine l	.earnii	na	ury/A	ugust 2021
Tim) h					- 3		May Marka 100
1 111	ie: 3	o mrs.		Note: Answ	er anv Fl	VE full au	estions.	(Max. Marks: 100
1	9	Explain the	designin	a of a learnin	a system	in detail			(10 Marks)
1	a. b.	Define lear	ning. Spe	cify the learn	ing proble	em for hand	dwriting	recogni	tion and robot driving.
	0	E1-i 4h						2	(05 Marks)
	C.	Explain the	e issues in	machine leaf	ning.				(05 Marks)
2	a.	Write the s	teps invol	ved in find-S	algorithn	1.			(05 Marks)
	b.	Apply can shown in 7	didate eli Fable O2(mination alg	orithm to	obtain fii ks or artic	ial versi les the u	on spac	the training set ds based on keywords
		supplied in	the article	e.		KS OF artic	ies the u		(10 Marks)
		Ar	ticle Cri	me Academ	nes Loca	ıl Music	Reads		× /
			a ₁ Tr	ue False	Fals	e True	True		
			a_2 Tr	ue False	Fals	e False	True False	Та	ble.O2(b)
		2	$a_3 \qquad Fa$	lse False		e False	False		
			a ₅ Tr	ue True	Fals	e False	True		~
	c.	State the in	ductive b	ias rote-learn	er, candid	ate-elimina	ation and	Find-S	algorithm. (05 Marks)
3	a.	Define the	following	terms with a	n example	e for each:			?
		(i) Decisio	on tree		(ii) Entro	py .	(iii)	Informa	ation gain
	h	(1V) Restric	tion Bias	ree for the ((v) Prete	rence Bias	Table O3	(b) to f	(10 Marks)
	υ.	poisonous	or not.		iala sel s		aute.Q3		(10 Marks)
		Example	Colour	Toughness	Fungus	Appearan	ce Pois	sonous	
		1	Green	Soft	Yes	Wrinkle	d Y	Yes	
		$\frac{2}{2}$	Green	Hard	Yes	Smooth Wrinklo		No	Table.O3(b)
		4	Brown	Soft	Yes	Wrinkle	d N	Yes	
		5	Green	Soft	Yes	Smooth	1	Yes	
	Ċ	6	Green	Hard	No	Wrinkle	d]	No	
		7	Orange	Soft	Yes	Wrinkle	d Y	res	
4	a.	Explain ID	3 algorith	m. Give an e	xample.				(10 Marks)
	b.	Explain the	issues an	d solutions to	o those iss	sues in deci	ision tree	learnin	g. (10 Marks)
5	a	Derive an o	expression	n for gradient	descent	rule to min	imize th	e error.	Using the same, write
U	u.	the gradient descent algorithm for training a linear unit. (10 Marks)							
	b.	Write back propagation algorithm that uses stochastic gradient descent method. What is the							
		effect of ad	ding mon	nentum to the	e network	?			(10 Marks)
6	a.	List the c	haracteris	tics of the p	problems	which can	n be so	lved us	ing back propagation
		algorithm.	2.		-				(05 Marks)
	b.	Design a po	erceptron	to implement	two inpu	t AND fun	ction.		(05 Marks)

Engineer

CENTRAL

c. Derive expressions for training rule of output and hidden unit weights for back propagation algorithm. (10 Marks)

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

- 7 a. Define Maximum a Posteriori (MAP) hypothesis. Derive an equation for MAP hypothesis using Baye's theorem. (04 Marks)
 - b. Given P(A = True) = 0.3, P(A = False) = 0.7, P(B = True | A = True) = 0.4, P(B = False | A = True) = 0.6, P(B = True | A = False) = 0.6, P(B = False | A = False) = 0.4. Calculate P(A = False / B = False) using Baye's rule. (06 Marks)
 - c. Given the previous patient's data in the Table.Q7(c). Use Naïve Baye's classifies to classify the new data (Chills = Y, Runny nose = N, Headache = Mild, Fever = Y) to find whether the patient has flue or not. (10 Marks)

Chills	Runny nose	Headache	Fever	Flue		
Y	Ν	Mild	Y	Ν		
Y	Y	No	Ν	Y		
Y	Ν	Strong	Y	Y		
N	Y	Mild	Y	Y		
Ν	N	No	Ν	N	5	
Ν	Y	Strong	Y	Y		
Ν	Y	Strong	N	N		
Y	Y	Mild	Y	Y		
Table.Q7(c)						

- **8** a. Describe the features of Bayesian learning methods.
 - b. A patient takes a lab test and the result comes back positive. It is known that the test returns a correct positive result in only 98% of the cases and a correct negative result is only 97% of the cases. Furthermore only 0.008 of the entire population has this disease.
 - (i) What is the probability that this patient has cancer?
 - (ii) What is the probability that he does not have cancer?
 - c. The Table.Q8(c) provides a set of 14 training examples of the target concept 'Play Tennis' where each day is described by the attributes, outlook, temperature, humidity and wind.

	Day	Outlook	Temperature	Humidity	Wind	Play Tennis		
	D1	Sunny	Hot	High	Weak	No		
	D2	Sunny	Hot	High	Strong	No		
	D3	Overcast	Hot	High	Weak	Yes		
	D4	Rain	Mild	High	Weak	Yes		
	D5	Rain	Cool	Normal	Weak	Yes		
	D6	Rain	Cool	Normal	Strong	No		
	D7	Overcast	Cool	Normal	Strong	Yes		
	D8	Sunny	Mild	High	Weak	No		
	D9	Sunny	Cool	Normal	Weak	Yes		
	D10	Rain	Mild	Normal	Weak	Yes		
	D11	Sunny	Mild	Normal	Strong	Yes		
	D12	Overcast	Mild	High	Strong	Yes		
	D13	Overcast	Hot	Normal	Weak	Yes		
	D14	Rain	Mild	High	Strong	No		
	Table O8(c)							

Use the Naïve Bayes classifier and the training data from this table to classify the following novel instance: <Outlook = Sunny, Temperature = Cool, Humidity = High, Wind = Strong>
(10 Marks)

9 a. Explain binomial distribution and write the expressions for its probability distribution, mean, variance and standard deviation. (04 Marks)

(05 Marks)

(05 Marks)

17CS73

- b. Define the following terms:
 - (i) Sample error
 - True error (ii)
 - (iii) N% confidence interval
 - (iv) Random variable
 - Expected value (v)
 - (vi) Variance
- c. Write K-Nearest Neighbour algorithm for approximating a discrete values target function. Apply the same for the following three-dimensional training data instances along with onedimensional output.
 - $\begin{array}{l} x_1 = 5, x_2 = 7, x_3 = 3, y = 4 \\ x_1 = 2, x_2 = 4, x_3 = 9, y = 8 \\ x_1 = 3, x_2 = 8, x_3 = 1, y = 2 \\ x_1 = 7, x_2 = 7, x_3 = 2, y = 4 \\ x_1 = 1, x_2 = 9, x_3 = 7, y = 8 \\ \end{array}$

Consider the query point $(x_1 = 5, x_2 = 3, x_3 = 4)$ and K = 3.

(10 Marks)

(06 Marks)

- 10 a. List the steps used for deriving confidence intervals. (04 Marks) b. Explain CADIT system using case based reasoning. (06 Marks)
 - Write Q learning algorithm. Consider the following state s_1 . Find $\hat{Q}(s_1, a_{right})$ for R given c. immediate reward as 0 and $\gamma = 0.9$. (10 Marks)

